|
Density altitude is the altitude relative to the standard atmosphere conditions (ISA) at which the air density would be equal to the indicated air density at the place of observation. In other words, density altitude is air density given as a height above mean sea level. "Density altitude" can also be considered to be the pressure altitude adjusted for non-standard temperature. Both an increase in temperature, decrease in atmospheric pressure, and, to a much lesser degree, increase in humidity will cause an increase in density altitude. In hot and humid conditions, the density altitude at a particular location may be significantly higher than the true altitude. In aviation, the density altitude is used to assess the aircraft's aerodynamic performance under certain weather conditions. The lift generated by the aircraft's airfoils and the relation between indicated and true airspeed are also subject to air density changes. Furthermore, the power delivered by the aircraft's engine is affected by the air density and air composition. ==Aircraft safety== Air density is perhaps the single most important factor affecting aircraft performance. It has a direct bearing on:〔AOPA Flight Training, Volume 19, Number 4; April 2007; Aircraft Owners and Pilots Association; ISSN 1047-6415〕 * The lift generated by the wings — reduction in air density reduces the wing's lift. * The efficiency of the propeller or rotor — which for a propeller (effectively an airfoil) behaves similarly to lift on wings. * The power output of the engine — power output depends on oxygen intake, so the engine output is reduced as the equivalent "dry air" density decreases and produces even less power as moisture displaces oxygen in more humid conditions. Aircraft taking off from a "hot and high" airport such as the Quito Airport or Mexico City are at a significant aerodynamic disadvantage. The following effects result from a density altitude which is higher than the actual physical altitude:〔 * The aircraft will accelerate slower on takeoff as a result of reduced power production. * The aircraft will need to achieve a higher true airspeed to attain the same lift - this implies both a longer takeoff roll and a higher true airspeed which must be maintained when airborne to avoid stalling. * The aircraft will climb slower as the result of reduced power production and lift. Due to these performance issues, a plane's takeoff weight may need to be lowered or takeoffs may need to be scheduled for cooler times of the day. Wind direction and runway slope may need to be taken into account. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Density altitude」の詳細全文を読む スポンサード リンク
|